\(\int \frac {(c+d \sin (e+f x))^2}{(3+3 \sin (e+f x))^{3/2}} \, dx\) [551]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 27, antiderivative size = 127 \[ \int \frac {(c+d \sin (e+f x))^2}{(3+3 \sin (e+f x))^{3/2}} \, dx=-\frac {(c-d) (c+7 d) \text {arctanh}\left (\frac {\sqrt {\frac {3}{2}} \cos (e+f x)}{\sqrt {3+3 \sin (e+f x)}}\right )}{6 \sqrt {6} f}+\frac {(c-5 d) d \cos (e+f x)}{6 f \sqrt {3+3 \sin (e+f x)}}-\frac {(c-d) \cos (e+f x) (c+d \sin (e+f x))}{2 f (3+3 \sin (e+f x))^{3/2}} \]

[Out]

-1/2*(c-d)*cos(f*x+e)*(c+d*sin(f*x+e))/f/(a+a*sin(f*x+e))^(3/2)-1/4*(c-d)*(c+7*d)*arctanh(1/2*cos(f*x+e)*a^(1/
2)*2^(1/2)/(a+a*sin(f*x+e))^(1/2))/a^(3/2)/f*2^(1/2)+1/2*(c-5*d)*d*cos(f*x+e)/a/f/(a+a*sin(f*x+e))^(1/2)

Rubi [A] (verified)

Time = 0.16 (sec) , antiderivative size = 138, normalized size of antiderivative = 1.09, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {2839, 2830, 2728, 212} \[ \int \frac {(c+d \sin (e+f x))^2}{(3+3 \sin (e+f x))^{3/2}} \, dx=-\frac {(c-d) (c+7 d) \text {arctanh}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {2} \sqrt {a \sin (e+f x)+a}}\right )}{2 \sqrt {2} a^{3/2} f}-\frac {(c-d) \cos (e+f x) (c+d \sin (e+f x))}{2 f (a \sin (e+f x)+a)^{3/2}}+\frac {d (c-5 d) \cos (e+f x)}{2 a f \sqrt {a \sin (e+f x)+a}} \]

[In]

Int[(c + d*Sin[e + f*x])^2/(a + a*Sin[e + f*x])^(3/2),x]

[Out]

-1/2*((c - d)*(c + 7*d)*ArcTanh[(Sqrt[a]*Cos[e + f*x])/(Sqrt[2]*Sqrt[a + a*Sin[e + f*x]])])/(Sqrt[2]*a^(3/2)*f
) + ((c - 5*d)*d*Cos[e + f*x])/(2*a*f*Sqrt[a + a*Sin[e + f*x]]) - ((c - d)*Cos[e + f*x]*(c + d*Sin[e + f*x]))/
(2*f*(a + a*Sin[e + f*x])^(3/2))

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2728

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, b*(C
os[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2830

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-d
)*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/(f*(m + 1))), x] + Dist[(a*d*m + b*c*(m + 1))/(b*(m + 1)), Int[(a + b*S
in[e + f*x])^m, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] &&  !LtQ[m
, -2^(-1)]

Rule 2839

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^2, x_Symbol] :> Simp[(b
*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])/(a*f*(2*m + 1))), x] + Dist[1/(a*b*(2*m +
1)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[a*c*d*(m - 1) + b*(d^2 + c^2*(m + 1)) + d*(a*d*(m - 1) + b*c*(m + 2
))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && LtQ[m
, -1]

Rubi steps \begin{align*} \text {integral}& = -\frac {(c-d) \cos (e+f x) (c+d \sin (e+f x))}{2 f (a+a \sin (e+f x))^{3/2}}-\frac {\int \frac {-\frac {1}{2} a \left (c^2+5 c d-2 d^2\right )+\frac {1}{2} a (c-5 d) d \sin (e+f x)}{\sqrt {a+a \sin (e+f x)}} \, dx}{2 a^2} \\ & = \frac {(c-5 d) d \cos (e+f x)}{2 a f \sqrt {a+a \sin (e+f x)}}-\frac {(c-d) \cos (e+f x) (c+d \sin (e+f x))}{2 f (a+a \sin (e+f x))^{3/2}}+\frac {((c-d) (c+7 d)) \int \frac {1}{\sqrt {a+a \sin (e+f x)}} \, dx}{4 a} \\ & = \frac {(c-5 d) d \cos (e+f x)}{2 a f \sqrt {a+a \sin (e+f x)}}-\frac {(c-d) \cos (e+f x) (c+d \sin (e+f x))}{2 f (a+a \sin (e+f x))^{3/2}}-\frac {((c-d) (c+7 d)) \text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,\frac {a \cos (e+f x)}{\sqrt {a+a \sin (e+f x)}}\right )}{2 a f} \\ & = -\frac {(c-d) (c+7 d) \text {arctanh}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {2} \sqrt {a+a \sin (e+f x)}}\right )}{2 \sqrt {2} a^{3/2} f}+\frac {(c-5 d) d \cos (e+f x)}{2 a f \sqrt {a+a \sin (e+f x)}}-\frac {(c-d) \cos (e+f x) (c+d \sin (e+f x))}{2 f (a+a \sin (e+f x))^{3/2}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 1.25 (sec) , antiderivative size = 242, normalized size of antiderivative = 1.91 \[ \int \frac {(c+d \sin (e+f x))^2}{(3+3 \sin (e+f x))^{3/2}} \, dx=\frac {\left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) \left (2 (c-d)^2 \sin \left (\frac {1}{2} (e+f x)\right )-(c-d)^2 \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )+(1+i) (-1)^{3/4} \left (c^2+6 c d-7 d^2\right ) \text {arctanh}\left (\left (\frac {1}{2}+\frac {i}{2}\right ) (-1)^{3/4} \left (-1+\tan \left (\frac {1}{4} (e+f x)\right )\right )\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^2-4 d^2 \cos \left (\frac {1}{2} (e+f x)\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^2+4 d^2 \sin \left (\frac {1}{2} (e+f x)\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^2\right )}{6 \sqrt {3} f (1+\sin (e+f x))^{3/2}} \]

[In]

Integrate[(c + d*Sin[e + f*x])^2/(3 + 3*Sin[e + f*x])^(3/2),x]

[Out]

((Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*(2*(c - d)^2*Sin[(e + f*x)/2] - (c - d)^2*(Cos[(e + f*x)/2] + Sin[(e +
f*x)/2]) + (1 + I)*(-1)^(3/4)*(c^2 + 6*c*d - 7*d^2)*ArcTanh[(1/2 + I/2)*(-1)^(3/4)*(-1 + Tan[(e + f*x)/4])]*(C
os[(e + f*x)/2] + Sin[(e + f*x)/2])^2 - 4*d^2*Cos[(e + f*x)/2]*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^2 + 4*d^2
*Sin[(e + f*x)/2]*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^2))/(6*Sqrt[3]*f*(1 + Sin[e + f*x])^(3/2))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(315\) vs. \(2(119)=238\).

Time = 2.70 (sec) , antiderivative size = 316, normalized size of antiderivative = 2.49

method result size
default \(-\frac {\left (\sin \left (f x +e \right ) \left (\sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {a}}\right ) a \,c^{2}+6 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {a}}\right ) a c d -7 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {a}}\right ) a \,d^{2}+8 \sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {a}\, d^{2}\right )+\sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {a}}\right ) a \,c^{2}+6 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {a}}\right ) a c d -7 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {a}}\right ) a \,d^{2}+2 \sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {a}\, c^{2}-4 \sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {a}\, c d +10 \sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {a}\, d^{2}\right ) \sqrt {-a \left (\sin \left (f x +e \right )-1\right )}}{4 a^{\frac {5}{2}} \cos \left (f x +e \right ) \sqrt {a +a \sin \left (f x +e \right )}\, f}\) \(316\)
parts \(-\frac {c^{2} \left (\sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {a}}\right ) a^{2} \sin \left (f x +e \right )+2 \sqrt {a -a \sin \left (f x +e \right )}\, a^{\frac {3}{2}}+\sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {a}}\right ) a^{2}\right ) \sqrt {-a \left (\sin \left (f x +e \right )-1\right )}}{4 a^{\frac {7}{2}} \cos \left (f x +e \right ) \sqrt {a +a \sin \left (f x +e \right )}\, f}+\frac {d^{2} \left (7 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {a}}\right ) a \sin \left (f x +e \right )+7 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {a}}\right ) a -8 \sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {a}\, \sin \left (f x +e \right )-10 \sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {a}\right ) \sqrt {-a \left (\sin \left (f x +e \right )-1\right )}}{4 a^{\frac {5}{2}} \cos \left (f x +e \right ) \sqrt {a +a \sin \left (f x +e \right )}\, f}+\frac {c d \left (-3 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {a}}\right ) a \sin \left (f x +e \right )-3 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {a}}\right ) a +2 \sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {a}\right ) \sqrt {-a \left (\sin \left (f x +e \right )-1\right )}}{2 a^{\frac {5}{2}} \cos \left (f x +e \right ) \sqrt {a +a \sin \left (f x +e \right )}\, f}\) \(402\)

[In]

int((c+d*sin(f*x+e))^2/(a+a*sin(f*x+e))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/4/a^(5/2)*(sin(f*x+e)*(2^(1/2)*arctanh(1/2*(a-a*sin(f*x+e))^(1/2)*2^(1/2)/a^(1/2))*a*c^2+6*2^(1/2)*arctanh(
1/2*(a-a*sin(f*x+e))^(1/2)*2^(1/2)/a^(1/2))*a*c*d-7*2^(1/2)*arctanh(1/2*(a-a*sin(f*x+e))^(1/2)*2^(1/2)/a^(1/2)
)*a*d^2+8*(a-a*sin(f*x+e))^(1/2)*a^(1/2)*d^2)+2^(1/2)*arctanh(1/2*(a-a*sin(f*x+e))^(1/2)*2^(1/2)/a^(1/2))*a*c^
2+6*2^(1/2)*arctanh(1/2*(a-a*sin(f*x+e))^(1/2)*2^(1/2)/a^(1/2))*a*c*d-7*2^(1/2)*arctanh(1/2*(a-a*sin(f*x+e))^(
1/2)*2^(1/2)/a^(1/2))*a*d^2+2*(a-a*sin(f*x+e))^(1/2)*a^(1/2)*c^2-4*(a-a*sin(f*x+e))^(1/2)*a^(1/2)*c*d+10*(a-a*
sin(f*x+e))^(1/2)*a^(1/2)*d^2)*(-a*(sin(f*x+e)-1))^(1/2)/cos(f*x+e)/(a+a*sin(f*x+e))^(1/2)/f

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 380 vs. \(2 (119) = 238\).

Time = 0.32 (sec) , antiderivative size = 380, normalized size of antiderivative = 2.99 \[ \int \frac {(c+d \sin (e+f x))^2}{(3+3 \sin (e+f x))^{3/2}} \, dx=-\frac {\sqrt {2} {\left ({\left (c^{2} + 6 \, c d - 7 \, d^{2}\right )} \cos \left (f x + e\right )^{2} - 2 \, c^{2} - 12 \, c d + 14 \, d^{2} - {\left (c^{2} + 6 \, c d - 7 \, d^{2}\right )} \cos \left (f x + e\right ) - {\left (2 \, c^{2} + 12 \, c d - 14 \, d^{2} + {\left (c^{2} + 6 \, c d - 7 \, d^{2}\right )} \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )\right )} \sqrt {a} \log \left (-\frac {a \cos \left (f x + e\right )^{2} + 2 \, \sqrt {2} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {a} {\left (\cos \left (f x + e\right ) - \sin \left (f x + e\right ) + 1\right )} + 3 \, a \cos \left (f x + e\right ) - {\left (a \cos \left (f x + e\right ) - 2 \, a\right )} \sin \left (f x + e\right ) + 2 \, a}{\cos \left (f x + e\right )^{2} - {\left (\cos \left (f x + e\right ) + 2\right )} \sin \left (f x + e\right ) - \cos \left (f x + e\right ) - 2}\right ) - 4 \, {\left (4 \, d^{2} \cos \left (f x + e\right )^{2} + c^{2} - 2 \, c d + d^{2} + {\left (c^{2} - 2 \, c d + 5 \, d^{2}\right )} \cos \left (f x + e\right ) + {\left (4 \, d^{2} \cos \left (f x + e\right ) - c^{2} + 2 \, c d - d^{2}\right )} \sin \left (f x + e\right )\right )} \sqrt {a \sin \left (f x + e\right ) + a}}{8 \, {\left (a^{2} f \cos \left (f x + e\right )^{2} - a^{2} f \cos \left (f x + e\right ) - 2 \, a^{2} f - {\left (a^{2} f \cos \left (f x + e\right ) + 2 \, a^{2} f\right )} \sin \left (f x + e\right )\right )}} \]

[In]

integrate((c+d*sin(f*x+e))^2/(a+a*sin(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

-1/8*(sqrt(2)*((c^2 + 6*c*d - 7*d^2)*cos(f*x + e)^2 - 2*c^2 - 12*c*d + 14*d^2 - (c^2 + 6*c*d - 7*d^2)*cos(f*x
+ e) - (2*c^2 + 12*c*d - 14*d^2 + (c^2 + 6*c*d - 7*d^2)*cos(f*x + e))*sin(f*x + e))*sqrt(a)*log(-(a*cos(f*x +
e)^2 + 2*sqrt(2)*sqrt(a*sin(f*x + e) + a)*sqrt(a)*(cos(f*x + e) - sin(f*x + e) + 1) + 3*a*cos(f*x + e) - (a*co
s(f*x + e) - 2*a)*sin(f*x + e) + 2*a)/(cos(f*x + e)^2 - (cos(f*x + e) + 2)*sin(f*x + e) - cos(f*x + e) - 2)) -
 4*(4*d^2*cos(f*x + e)^2 + c^2 - 2*c*d + d^2 + (c^2 - 2*c*d + 5*d^2)*cos(f*x + e) + (4*d^2*cos(f*x + e) - c^2
+ 2*c*d - d^2)*sin(f*x + e))*sqrt(a*sin(f*x + e) + a))/(a^2*f*cos(f*x + e)^2 - a^2*f*cos(f*x + e) - 2*a^2*f -
(a^2*f*cos(f*x + e) + 2*a^2*f)*sin(f*x + e))

Sympy [F]

\[ \int \frac {(c+d \sin (e+f x))^2}{(3+3 \sin (e+f x))^{3/2}} \, dx=\int \frac {\left (c + d \sin {\left (e + f x \right )}\right )^{2}}{\left (a \left (\sin {\left (e + f x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate((c+d*sin(f*x+e))**2/(a+a*sin(f*x+e))**(3/2),x)

[Out]

Integral((c + d*sin(e + f*x))**2/(a*(sin(e + f*x) + 1))**(3/2), x)

Maxima [F]

\[ \int \frac {(c+d \sin (e+f x))^2}{(3+3 \sin (e+f x))^{3/2}} \, dx=\int { \frac {{\left (d \sin \left (f x + e\right ) + c\right )}^{2}}{{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate((c+d*sin(f*x+e))^2/(a+a*sin(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

integrate((d*sin(f*x + e) + c)^2/(a*sin(f*x + e) + a)^(3/2), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 266 vs. \(2 (119) = 238\).

Time = 0.35 (sec) , antiderivative size = 266, normalized size of antiderivative = 2.09 \[ \int \frac {(c+d \sin (e+f x))^2}{(3+3 \sin (e+f x))^{3/2}} \, dx=\frac {\frac {16 \, \sqrt {2} d^{2} \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )}{a^{\frac {3}{2}} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} + \frac {\sqrt {2} {\left (\sqrt {a} c^{2} + 6 \, \sqrt {a} c d - 7 \, \sqrt {a} d^{2}\right )} \log \left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}{a^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} - \frac {\sqrt {2} {\left (\sqrt {a} c^{2} + 6 \, \sqrt {a} c d - 7 \, \sqrt {a} d^{2}\right )} \log \left (-\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}{a^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} - \frac {2 \, \sqrt {2} {\left (\sqrt {a} c^{2} \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 2 \, \sqrt {a} c d \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + \sqrt {a} d^{2} \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}}{{\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - 1\right )} a^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}}{8 \, f} \]

[In]

integrate((c+d*sin(f*x+e))^2/(a+a*sin(f*x+e))^(3/2),x, algorithm="giac")

[Out]

1/8*(16*sqrt(2)*d^2*sin(-1/4*pi + 1/2*f*x + 1/2*e)/(a^(3/2)*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))) + sqrt(2)*(sq
rt(a)*c^2 + 6*sqrt(a)*c*d - 7*sqrt(a)*d^2)*log(sin(-1/4*pi + 1/2*f*x + 1/2*e) + 1)/(a^2*sgn(cos(-1/4*pi + 1/2*
f*x + 1/2*e))) - sqrt(2)*(sqrt(a)*c^2 + 6*sqrt(a)*c*d - 7*sqrt(a)*d^2)*log(-sin(-1/4*pi + 1/2*f*x + 1/2*e) + 1
)/(a^2*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))) - 2*sqrt(2)*(sqrt(a)*c^2*sin(-1/4*pi + 1/2*f*x + 1/2*e) - 2*sqrt(a
)*c*d*sin(-1/4*pi + 1/2*f*x + 1/2*e) + sqrt(a)*d^2*sin(-1/4*pi + 1/2*f*x + 1/2*e))/((sin(-1/4*pi + 1/2*f*x + 1
/2*e)^2 - 1)*a^2*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))))/f

Mupad [F(-1)]

Timed out. \[ \int \frac {(c+d \sin (e+f x))^2}{(3+3 \sin (e+f x))^{3/2}} \, dx=\int \frac {{\left (c+d\,\sin \left (e+f\,x\right )\right )}^2}{{\left (a+a\,\sin \left (e+f\,x\right )\right )}^{3/2}} \,d x \]

[In]

int((c + d*sin(e + f*x))^2/(a + a*sin(e + f*x))^(3/2),x)

[Out]

int((c + d*sin(e + f*x))^2/(a + a*sin(e + f*x))^(3/2), x)